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Abstract. The discrete first and second Painlevé equations (dPI and dPII ) are integrable difference
equations which have classical first, second or third Painlevé equations (PI , PII or PIII ) as continuum
limits. dPI and dPII are believed to be integrable because they are discrete isomonodromy conditions
for associated (single-valued) linear problems. An infinite hierarchy of integrable difference
equations that share the same linear deformation problem as dPI was shown to exist by Cresswell
and Joshi. In this paper, we recall the results shown for dPI and show how to deduce a hierarchy for
dPII . Each member of the respective hierarchies is shown to be generated by difference recursion
operators. Furthermore, we show that continuum limits of these difference hierarchies lead to the
PI , PII and PIII hierarchies. Finally, we construct Miura transformations of the dPII hierarchy and
show that these lead to the hierarchy of the discrete thirty-fourth Painlevé equation.

1. Introduction

The first discrete Painlevé equation (dPI)

xn+1 + xn + xn−1 = C1 +C2n

xn
+C3 (1.1)

and the second discrete Painlevé equation (dPII )

xn+1 + xn−1 = (C1 +C2n)xn +C3

1− x2
n

(1.2)

have been the subject of many investigations [1, 2] because of the remarkable properties they
share with their continuum limits. These are the well known integrable nonlinear classical
ordinary differential equations (ODEs) called the Painlevé equations. In this paper, we add
to their remarkable features by showing that each lies at the base of an infinite hierarchy of
nonlinear difference equations that are generated by a recursion operator.

The scaled continuum limitxn = 1 +h2 u(t), t = nh, with C1 = −3 + r1h2, C2 = r2h5,
C3 = 3− β − r3h4, where theri (i = 1, 2, 3) are constants, applied to dPI yields a scaled and
translated version of the classical PI

u′′ = 6u2 + t

ash→ 0. The scaled continuum limitxn = hu(t), t = nh, with C1 = 2 + r1h3, C2 = r2h3,
C3 = r3h3, where theri (i = 1, 2, 3) are constants, applied to dPII yields a scaled and translated
version of the classical PII

u′′ = 2u3 + tu + α
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ash→ 0 (α is a constant). It is well known that dPII also has a continuum limit to the third
Painlev́e equation [3] (PIII )

u′′(t) = (u′)2

u
− u

′

t
+
αu2 + β

t
+ γ u3 +

δ

u

whereα, β, γ , δ are constants.
A characteristic feature of the classical Painlevé equations is that they possess the Painlevé

property, i.e. all movable singularities of all solutions are poles. Painlevé [4], Gambier [5] and
Fuchs [6] identified six second-order nonlinear ODEs (under some mild conditions) as the only
ones with the Painlev́e property whose general solutions are new transcendental functions. PI ,
PII and PIII were the first three of these six equations. See the list of 50 canonical classes
identified by the Painlev́e school in Ince [7]. PXXXIV referred to below is the thirty-fourth
member of this list.

The Painlev́e equations and dPI, dPII play important roles in mathematics and physics. The
generic solutions of the Painlevé equations are higher transcendental functions that cannot be
expressed in terms of the classical special functions [7]. The Painlevé equations are integrable
reductions of soliton equations [8, 9]. Their discrete versions appear in important physical
applications such as two-dimensional quantum gravity [1, 10, 11].

The Painlev́e equations are considered integrable because they are isomonodromy
conditions for associated (single-valued) linear systems of differential equations [12, 13].
There is strong evidence that such integrability is related to the Painlevé property [14–16].

A discrete version of the Painlevé property, called the singularity confinement property,
was proposed by Grammaticos, Ramaniet al [2, 17] who used it to derive discrete versions
of the Painlev́e equations. Although it is now known that this property alone is not sufficient
for integrability [18], the discrete Painlevé equations found by Grammaticos, Ramaniet al
are known to be integrable in the sense that they are compatibility conditions that ensure
isomonodromy for associated linear problems [19, 20]. The confinement property is equivalent
to the well-posedness of the discrete equation forxn, even through apparent singularities of
the equation, on the complex sphere ofx-values in both forward and backward evolution inn.
For example, in the case of dPII (equation (1.2)), ifxn−1 = b, xn = ±1 (a singularity of the
map), thenxn+1 = ∞, xn+2 = ∓1 andxn+3 is an analytic function ofb, ensuring that the map
remains well-posed through a singularity [17].

There exist many other properties of the Painlevé equations that are shared by their discrete
counterparts. Both can be rewritten in terms of so-calledτ functions that have no movable
singularities [21, 22], both possess so-called Miura and Bäcklund transformations that map the
equation to another integrable equation (or to the same one with different parameters) [23–26].
PII is well known to be related by a Miura transformation to PXXXIV [7].

In this paper we describe further similarities between the continuous and discrete settings
by constructing integrable hierarchies of equations associated with the same linear problem.

Integrable hierarchies of partial differential equations (PDEs) and ODEs as well as the
links between them are well known. For example, the modified Korteweg–de Vries (mKdV)
hierarchy (using∂ = ∂

∂x
)

Wt2i+1 + ∂(∂ + 2W)Li [Wx −W 2] = 0 i = 1, 2, 3, . . .

where

Li+1,x := (∂3 + 4U∂ + 2Ux)Li L1[U ] := U
may be obtained from the Korteweg–de Vries hierarchy [27]

Ut2i+1 + ∂Li+1[U ] = 0 i = 1, 2, 3, . . .
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via the Miura transformationU = Wx −W 2 [28]. In turn, the PII hierarchy(
d

dX
+ 2V

)
Li [V

′ − V 2] − VX − αi = 0 i = 1, 2, 3, . . . (1.3)

may be found through a similarity reduction of the mKdV hierarchy [29]

W = 1

[(2i + 1)t2i+1]1/(2i+1)
V (X) X = x

[(2i + 1)t2i+1]1/(2i+1)
.

Also, the PXXXIV hierarchy

[2Li [Y ] −X]
d2

dX2
(Li [Y ])−

[
d

dX
(Li [Y ])

]2

+
d

dX
(Li [Y ])

+[2Li [Y ] −X]2Y − αi(1− αi) = 0

may be constructed from the PII hierarchy through the Miura transformation [30]

V = −
[

d

dX
(Li [Y ])− αi

]
/[2Li [Y ] −X].

Equation (1.3) expresses an infinite hierarchy of equations through the recursive action of one
operatorLi . Such an expression also allows us to deduce Miura and Bäcklund transformations
for the whole hierarchy (as above) and corresponding special integrals for the whole hierarchy
[31]. (In the case of PDEs, it is well known that the existence of such operators is related
to Lie algebras underlying soliton equations [32–34].) Here we are interested in deriving a
corresponding expression for the discrete setting.

The paper is organized as follows. In section 2, we recall the isomonodromy problem
for dPI and extend on the work presented in [35] by deriving the associated infinite hierarchy
of integrable equations in terms of difference operators. We provide explicit examples up to
sixth order and continuum limits of the second- and fourth-order equations. This is repeated
for dPII in section 3. In section 4, we construct the dPXXXIV hierarchy by applying Miura
transformations to equations in the dPII hierarchy. We provide explicit examples up to fourth
order. In the following, all occurrences ofci , ri denote constants.

2. The dPI hierarchy

In this section, we derive the dPI hierarchy in operator form and give the first few members of
the hierarchy explicitly. We also show that their continuum limits are members of both the PI

and PII hierarchies found in [29, 35, 36].

2.1. The hierarchy

The linear problem associated with dPI [19] is

xnφn+1 = λφn − φn−1 (2.1)
∂φn

∂λ
= anφn+1 + bnφn (2.2)

whereφ, x, a, b depend on a discrete variablen; φ, a, b depend on the continuous variableλ,
anda, b are rational inλ.
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The compatibility conditions of equations (2.1) and (2.2) are

bn+1− bn−1 + λ

(
an+1

xn+1
− an
xn

)
= 0 (2.3)

λ2

xn

(
an+1

xn+1
− an
xn

)
+
λ

xn
(bn+1− bn)− 1

xn

(
xn
an+1

xn+1
− an−1 + 1

)
= 0. (2.4)

Define

pn := an

xn
and qn := bn + bn−1.

Thenb can be eliminated from equation (2.4) by using (2.3). The result is

−λ2(pn+1− pn) + xn+1pn+2 + xnpn+1− xnpn − xn−1pn−1 + 2= 0. (2.5)

We concentrate on results forpn. Corresponding results forqn can be obtained from
equation (2.3).

Equation (2.5) suggests thatpn is polynomial inλ but gives no restriction on the degree
of the polynomial. (More generally it could be rational inλ, but for simplicity we restrict
our analysis to the polynomial case.) Below, we generate a sequence of solutionspn of
equation (2.5) where the sequence is indexed by the degree.

First, to capture the entire sequence in closed form rewrite (2.5) as

−λ2(12pn +1pn) + 31(xn1pn) + 41(xnpn)− 2(1xn) · (1pn + pn)

+12xn(1pn) +12(xnpn) + 2= 0

where1pn := pn+1− pn, or

[λ2(12 +1)− J ]pn = 2 (2.6)

where

J := 31(xn1) + 41(xn)− 2(1xn) · (1 + 1) +12xn(1) +12(xn).

Notice that(12 +1)pn = pn+2− pn+1.
Now takepn to be polynomial inλ

pn :=
l∑

k=0

Pk,nλ
k.

Substituting this expression into (2.6) and solving for the coefficientsPk,n we obtain

Pl,n = cl Pl−1,n = cl−1

Pk−2,n = (12 +1)−1JPk,n for 26 k 6 l

where(12 +1)−1Fn := ∑n−2
k=0 Fk is the discrete analogue of the nonlocal operator∂−1F =∫ x

F dx. These lead to the compatibility conditions

JP1,n = 0 and JP0,n + 2= 0.

Note that the equation forP1,n is homogeneous, whereas the equation forP0,n is not.
Clearly, P1,n = 0 is a possible solution. Also note that the equations definingPk,n for
even and oddk may be separated into otherwise identical equations. These lead to two
inconsistent compatibility conditions forxn unless one of these two subsequences ofPk,n
vanishes identically. In fact,Pl,n = 0 for oddl is the only possibility due to the inhomogeneity
of the equation forP0,n.
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We are therefore left with the even polynomial

pn =
m∑
k=0

P2k,nλ
2k

where

P2m,n = cm+2

P2k−2,n = (12 +1)−1JP2k,n for 16 k 6 m

andJP0,n = −2.
Recursive substitution of thePk,n leads to the single compatibility condition

Rm(xn+2− xn)cm+2 = −2 m ∈ N (2.7)

whereR := J (12 +1)−1.
Below we explicitly list the solutions for differentm up tom = 3.

• m = 0 yields the trivial linear nonautonomous equation, d0PI:

xnc2 = c1 + c0(−1)n − n
with

P0,n = c2 6= 0.

• m = 1 yields the second-order equation, d2PI:

xnc3(xn−1 + xn + xn+1) + xnc2 = c1 + c0(−1)n − n (2.8)

with

P0,n = c2 + c3(xn + xn−1)

P2,n = c3 6= 0.

In this case, we have recovered the more general version of dPI [17].
• m = 2 yields the fourth-order equation, d4PI:

xnc4(xn+1xn+2 + x2
n+1 + 2xnxn+1 + xn−1xn−2 + x2

n−1 + 2xnxn−1 + x2
n + xn−1xn+1)

+xnc3(xn−1 + xn + xn+1) + xnc2 = c1 + c0(−1)n − n (2.9)

with

P0,n = c2 + c3(xn + xn−1) + c4(2xnxn−1 + x2
n−1 + xn−1xn−2 + xnxn+1 + x2

n)

P2,n = c3 + c4(xn + xn−1)

P4,n = c4 6= 0.

• m = 3 yields the sixth-order equation, d6PI:

xnc5(xn+1xn+2xn+3 + 2xnxn+1xn+2 + xn−1xn+1xn+2 + x3
n+1 + xn+1x

2
n+2 + 2xn+2x

2
n+1

+3xn+1x
2
n + 3xnx

2
n+1 + xn−1xn−2xn−3 + 2xnxn−1xn−2 + xn−2xn−1xn+1

+x3
n−1 + x2

n−2xn−1 + 2x2
n−1xn−2 + 3xn−1x

2
n + 3x2

n−1xn + 4xn−1xnxn+1

+x3
n + xn−1x

2
n+1 + x2

n−1xn+1) + xnc4(xn+1xn+2 + x2
n+1 + 2xnxn+1

+xn−1xn−2 + x2
n−1 + 2xnxn−1 + x2

n + xn−1xn+1)

+xnc3(xn−1 + xn + xn+1) + xnc2 = c1 + c0(−1)n − n
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with

P0,n = c2 + c3(xn + xn−1) + c4(2xnxn−1 + x2
n−1 + xn−1xn−2 + xnxn+1 + x2

n)

+c5(xnxn+1xn+2 + 2xn−1xnxn+1 + 3x2
nxn−1 + 3x2

n−1xn + x2
n−2xn−1

+2xn+1x
2
n + x3

n + x3
n−1 + xnx

2
n+1 + xn−1xn−2xn−3 + 2xnxn−1xn−2

+2x2
n−1xn−2)

P2,n = c3 + c4(xn + xn−1) + c5(2xnxn−1 + x2
n−1 + xn−1xn−2 + xnxn+1 + x2

n)

P4,n = c4 + c5(xn + xn−1)

P6,n = c5 6= 0.

As equation (2.7) is solved for increasingm, the order of the compatibility condition
increases by 2 at each stage.

2.2. Continuum limits

Continuum limits of difference equations found in section 2.1 are calculated.

2.2.1. The casem = 1, d2PI . Consider equation (2.8). Ifc0 = 0, we recover the equation
often referred to as dPI, with PI as one of its continuum limits. Ifc0 6= 0 however, the presence
of the (−1)n suggests an odd–even dependence inxn. This dependence must be taken into
account to obtain a meaningful continuum limit. This leads to the transformation

x2k−1 = uk x2k = vk.
(This is similar to the limit pointed out by Grammaticoset al [3] for dPII generalized with an
additional(−1)n term.)

In our search for a continuum limit, we use the substitutions

uk = 1 +hy(kh) vk = z(kh) t = kh c3 = − 2

r1
h−3

and for ease of notation rename

µ := c1 + c0

c3
ν := c1− c0 + 1

c3
σ := −c2

c3
and ρ := − 2

c3
.

Then we find

z = 1
2(σ + ν − 1)− 1

2(ν + 1)yh + 1
2

(
r1t + νy2 − 1

2νyt − 1
2yt
)
h2

+1
2

(
1
2r1 + νyyt − r1ty − νy3

)
h3 + O(h4).

Using the scalings

µ = − 1
4σ

2 + 1
4ν

2 + 1
2ν + σ − 3

4 − r2h3

σ = 3
2 + 1

2ν
2 + r3h

2

ν = 1 + 2
3r4h

in the limit h→ 0 we are left with

ytt − 2y3 + 2r4y
2 − 2r1ty + 2r3y + 2

3r1r4t + r1 + 2r2 = 0.

This is a scaled and translated version of PII .
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2.2.2. The casem = 2, d4PI . We first examine the casec0 = 0 and illustrate the fact that
second-order continuum limits are possible even though difference equation (2.9) is fourth
order. Under the substitution

xn = 1 +h2u(nh) t = nh
and the scalings

10 +
3c3

c4
− c1

c4
+
c2

c4
= r1h4 20 +

3c3

c4
+
c1

c4
= r2h2 1

c4
= r3h5

equation (2.9) becomes(
10 +

c3

c4

)
utt +

(
10− c1

c4

)
u2 + r2u + r1 + r3t = 0

in the limit h→ 0. This is a scaled and translated version of PI . However, this case restricts
the four degrees of freedom contained in the parameters of equation (2.9) to three.

Scalings that maintain the full four degrees of freedom, i.e.

10 +
3c3

c4
− c1

c4
+
c2

c4
= r1h6 20 +

3c3

c4
+
c1

c4
= r2h4

10 +
c3

c4
= r3h2 1

c4
= r4h7

lead, in the limith→ 0, to the fourth-order equation

utttt + 5(ut )
2 + 10uutt + r3utt + 10u3 + 3r3u

2 + r2u + r1 + r4t = 0. (2.10)

This is a scaled and translated version of the fourth-order member of the PI hierarchy [35, 36].
The casec0 6= 0 requires a new general approach to finding continuum limits in order to

obtain a nontrivial limit.
Again, the presence of the(−1)n leads us to take

x2k−1 = Uk x2k = Vk
whereupon equation (2.9) becomes a system inU andV . Assumet = kh and expand each
variable and parameter in this system as general Taylor series expansions inh. We obtain
restrictions on the coefficients in these expansions by equating coefficients of successive powers
of h. In demanding a nontrivial continuum limit (of order greater than 2) relationships between
coefficients up to O(h5) are necessary. The continuum limit we obtain is

vtttt +C3vtt − 5C6(2vvtt + (vt )
2)− 10C1(v(vt )

2 + v2vtt ) + 6C2
1v

5 +C2v
4 +C4v

3

+C5v
2 +C8v +C7t (2C1v +C6) +C9 = 0 (2.11)

where theCi (i = 1, . . . ,9) are constants andv is the O(h) coefficient in the expansion of
Vk. For details see the appendix. Equation (2.11) is a scaled and translated version of the
fourth-order member of the PII hierarchy (4PII ) [29].

3. The dPII hierarchy

We follow the procedure outlined in the previous section to find the dPII hierarchy. We also
give continuum limits of the first few members of this hierarchy.
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3.1. The hierarchy

The linear problem associated with dPII [3] is

8n+1 = Ln(λ)8n (3.1)
∂8n

∂λ
= Mn(λ)8n (3.2)

where

L =
(
λ xn

xn 1/λ

)
M =

(
An Bn

Cn −An

)
andA, B, C are rational inλ.

The compatibility of equations (3.1) and (3.2) gives three equations definingA, B andC.
They reduce to a single equation inA by using two of these equations to eliminateB andC in
terms ofA [3],

λ2xn+1xn−1(An − An+1) + λxn+1xn−1 + xn+1xn(An(1 +x2
n−1) +An−1(x

2
n−1− 1))

−xnxn−1(An+1(1 +x2
n+1) +An+2(x

2
n+1− 1))

−1

λ
xn(xn+1 + xn−1)− 1

λ2
xn+1xn−1(An+1− An) +

1

λ3
xn+1xn−1 = 0.

This equation may be rewritten in operator form (using1An := An+1− An)

λ +
1

λ3
− xn+1

λ

(
1

xn+2
+

1

xn

)
=
[(
λ2 +

1

λ2

)
(12 +1) + J

]
An (3.3)

where

J := xn+1

[
1(1 + 2)

((
xn − 1

xn

)
1 + 2xn

)
− 2

xn
1

]
.

Equation (3.3) suggests thatAn is rational inλ. In this case it turns out that only odd
degree terms inλ and 1/λ are needed in the expansion ofAn. Without loss of generality we
consider

An := a1,n
1

λ
+

m∑
k=1

(
λ2k−1 +

1

λ2k+1

)
a2k+1,n.

Substituting this expansion in (3.3) and solving for the coefficientsa2i+1 (i = 0, . . . , m) we
obtain

a2m+1,n = cm+2 a2m−1,n = −2cm+2xnxn−1 + cm+1

a2k−3,n = −a2k+1,n − (12 +1)−1J a2k−1,n for k = 3, . . . , m

and
a1,n = n− a5,n − (12 +1)−1J a3,n

with the compatibility condition

xn+1

(
1

xn+2
+

1

xn

)
= −2(12 +1)a3,n − J a1,n. (3.4)

Equation (3.4) may be rewritten after recursive substitution of thea2i+1 as

xn+1

(
1

xn+2
+

1

xn

)
= Lm−2(cm+2)− Lm−1(cm+1− 2cm+2xnxn−1)− J n
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for m > 0, where

Li := −Li−2 − Li−1(1
2 +1)−1J for i = 3, . . . , m− 1

L0 := J L1 := 2(12 +1)−RJ L2 := −3J +R2J
and

R := J (12 +1)−1.

We list the first three equations in the hierarchy. (The fourth equation (m = 3) is a sixth-order
equation which is too long to list here.)

• m = 0 yields the trivial linear nonautonomous equation, d0PII :

xn(2c2 + 2n + 1) = c1 + c0(−1)n

with

a1,n = c2 + n.

• m = 1 yields the second-order equation, d2PII :

2c3(xn+1 + xn−1)(1− x2
n) + xn(2c2 + 2n + 1) = c1 + c0(−1)n (3.5)

with

a1,n = c2 − 2c3xnxn−1 + n

a3,n = c3 6= 0.

Equation (3.5) is the general form of dPII [3] traditionally written as

xn+1 + xn−1 = (C1 +C2n)xn +C3 +C4(−1)n

1− x2
n

(3.6)

whereC1 := −(2c2 + 1)/(2c3), C2 := −1/c3, C3 := c1/(2c3) andC4 := c0/(2c3).
• m = 2 yields the fourth-order equation, d4PII :

2c4(xn+2(1− x2
n+1) + xn−2(1− x2

n−1))(1− x2
n)− 2c4xn(xn+1 + xn−1)

2(1− x2
n)

+2c3(xn+1 + xn−1)(1− x2
n) + xn(2c2 + 2n + 1) = c1 + c0(−1)n (3.7)

with

a1,n = c2 − 2c3xnxn−1 + n− 2c4(xnxn−2 + xn+1xn−1)

+2c4xnxn−1(xn−1xn−2 + xn+1xn + xn−1xn)

a3,n = c3− 2c4xnxn−1

a5,n = c4 6= 0.

We write (3.7) as

xn+2(1− x2
n+1) + xn−2(1− x2

n−1) = (xn+1 + xn−1)(xn(xn+1 + xn−1) +C5)

+
(C1 +C2n)xn +C3 +C4(−1)n

1− x2
n

(3.8)

whereC1 := −(2c2 + 1)/(2c4), C2 := −1/c4, C3 := c1/(2c4), C4 := c0/(2c4), and
C5 := −c3/c4.

3.2. Continuum limits

3.2.1. The casem = 1, d2PII . WhenC4 = 0, equation (3.6) is dPII with PII as one of its
continuum limits. WhenC4 6= 0, equation (3.6) has PIII as a continuum limit [3].
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3.2.2. The casem = 2, d4PII . Firstly, for the caseC4 = 0 we see that under the substitution

xn = hu(nh) t = nh
scalings that give PII as a second-order continuum limit may be found, but the scalings

C1 = −6− 2h2r1− 2h3r2 C2 = h5r3 C3 = h5r4

C5 = 4 +h2r1 + h3r2

lead, in the limith→ 0, to the fourth-order equation

utttt − 10u2utt − 10u(ut )
2 + 2u3r1 + 6u5− ur3t − r1utt − r4 = 0. (3.9)

Equation (3.9) is a scaled and translated version of4PII [29].
For the caseC4 6= 0 we use a similar approach to that used to find the continuum limit of

d4PI, c0 6= 0 (subsection 2.2.2).
The(−1)n term in equation (3.8) prompts us to takex2k−1 = Uk, x2k = Vk. In the resulting

system, we find that general expansions

t = kh
Uk = i

hv1(t)
+ u2(t) + hu3(t) + h2u4(t) + h3u5(t) + O(h4)

Vk = iv1(t)

h
+ v2(t) + hv3(t) + h2v4(t) + h3v5(t) + O(h4)

C1 = 2

h4
+

2r1
h3

C2 = r2

h
C3 = ir3

h

C4 = ir4
h

C5 = 2

h2
+
r1

h

with added relationships for theuj (t), j = 2, 3, 4, 5, in terms ofvl(t), 16 l 6 j , make order
h terms vanish until O(h) where in the limith→ 0 we have the fourth-order equation

v′′′′1 + 10v2
1v
′′
1 −

v′′1
2
(4r2t − r2

1)− 2r2v
′
1−

4v′1v
′′′
1

v1
+

21v′′1(v
′
1)

2

2v2
1

− 3(v′′1)
2

v1
+

10v′′1
v2

1

− 9(v′1)
4

2v3
1

−20(v′1)
2

v3
1

+
(v′1)

2

2v1
(4r2t − r2

1) + 8v5
1 − 2v3

1(4r2t − r2
1) + 8v2

1(r3− r4)−
8

v3
1

+
2

v1
(4r2t − r2

1)− 8(r3 + r4) = 0.

We propose that the above equation is, in fact, the fourth-order equation in the PIII hierarchy.

4. The dPXXXIV hierarchy

Recently Joshiet al [26] have proposed an algorithmic method for deriving Miura
transformations for discrete equations. It has been used to construct Miura transformations
for a number of examples and, in particular, that linking dPII with dPXXXIV .

In this section, we use the same method to find a Miura transformation associated with
d4PII and hence find a fourth-order equation that we propose is the next equation in the dPXXXIV

hierarchy. A similar approach may be applied to higher-order equations in the dPII hierarchy
thereby providing a method by which to construct the full dPXXXIV hierarchy.
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The starting point of this algorithm is the associatedτ functions. For dPII (equation (1.2))
these are given byFn andGn where the bilinearizing transformation

xn = 1− Fn+1Gn−1

FnGn

= −1 +
Fn−1Gn+1

FnGn

may be found by considering the singularity structure{±1,∞,∓1} [22].
Now rewrite these in terms of discrete logarithmic derivatives

xn = 1− un
vn
= −1 +

un−1

vn+1
(4.1)

whereun = Fn/Fn+1 andvn = Gn−1/Gn. Elimination of one of theu, v by combining (4.1)
and (1.2), leads to a transformed equation, in this case dPXXXIV

(wn+1 +wn − zn+1)(wn +wn−1− zn) = (2wn − C3− zn)(2wn +C3− zn+1)

wn
(4.2)

wherezn = C1 +C2n. Equation (4.2) is linked to dPII by the Miura transformation

xn = wn − wn−1− C3

zn
.

We now consider a similar construction for d4PII . First, we find that the singularity
structure for d4PII is {±1,∞,∓1}. Thus we consider associatedτ functions, bilinearizing
transformations and logarithmic derivative versions thereof to be the same as for dPII . Then
by eliminating one of theu, v by combining (4.1) and (3.8), we find the transformed equation

w2
n(wn+2wn+1 +wn−1wn−2)(wn − κ) +w5

n − 2w4
n(κ + 2)

−wn(znwn+2wn+1 + zn+1wn−1wn−2)

+wn+1wnwn−1(wn+2 +wn+1 +wn−1 +wn−2)(2wn − κ)
+w2

n(wn+2w
2
n+1 +w2

n−1wn−2)

+wn+1wnwn−1(wn+2 +wn+1)(wn−1 +wn−2)

+w2
n(w

2
n+1 +w2

n−1)(3wn − 2κ − 4)− wn(znw2
n+1 + zn+1w

2
n−1)

+wn+1wnwn−1(κ
2 − 4wnκ − 8wn + 5w2

n) +w2
n(w

3
n+1 +w3

n−1)

+w2
n(wn+1 +wn−1)(κ

2 + 8κ + 3w2
n − 4wnκ − 8wn)

−w2
n((2zn + zn+1)wn+1 + (2zn+1 + zn)wn−1)

+wn((2zn+1 + zn(κ + 2))wn+1 + (2zn + zn+1(κ + 2))wn−1)

+w3
n(−(zn + zn+1) + κ(κ + 8)) +w2

n((zn + zn+1)(κ + 2)− 4κ2)

+wn(znzn+1− 2κ(zn + zn+1)) + (C3 + zn)(C3− zn+1) = 0 (4.3)

whereκ = C5 + 2. Equation (4.3) is linked to d4PII by the Miura transformation

xn = − (wn − wn−1)(wn +wn−1− κ) +wn+1wn − wn−1wn−2 +C3

(wn +wn−1)(wn +wn−1− κ) +wn+1wn +wn−1wn−2 + zn
.

We propose that equation (4.3) is the fourth-order equation in the dPXXXIV hierarchy.

5. Discussion

In this paper we have presented the discrete PI and PII hierarchies in operator form. We have
shown their connection with hierarchies of ODEs through continuum limit calculations. The
connection of the dPII hierarchy with the dPXXXIV hierarchy is also shown through Miura
transformations.
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These results reveal a rich underlying structure that is open to further investigation. For
example, in deriving discrete Painlevé hierarchies in operator form through transformations of
already existing operator generated discrete Painlevé hierarchies. An obvious starting point
would be with the dPXXXIV hierarchy as a Miura transformation of the dPII hierarchy. On a
larger scale, a study of the properties of the difference operators associated with each hierarchy
would provide insight into what governs the hierarchies and would enable access to important
information such as special solutions or special integrals.
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Appendix

Details of the continuum limit calculation of d4PI, c0 6= 0 (subsection 2.2.2) are presented.
Consider equation (2.9). Let

x2k−1 = Uk x2k = Vk
and rename

µ := c3

c4
τ := c2

c4

β := c1 + c0

c4
ω := c1− c0 + 1

c4
and ρ := − 2

c4
.

Equation (2.9) now becomes the system

Uk+1Vk + V 2
k + 2VkUk +Uk−1Vk−1 + V 2

k−1 + 2UkVk−1 +U2
k + Vk−1Vk

+µ(Uk + Vk + Vk−1) + τ − ω + ρk

Uk
= 0 (A.1)

Uk+1Vk+1 +U2
k+1 + 2VkUk+1 +UkVk−1 +U2

k + 2UkVk + V 2
k +UkUk+1

+µ(Uk+1 +Uk + Vk) + τ − β + ρk

Vk
= 0. (A.2)

Assume the following general Taylor series expansions:

t = kh ρ = r1h5 + O(h6)

Uk = u0(t) + hu1(t) + h2u2(t) + h3u3(t) + h4u4(t) + h5u5(t) + O(h6)

Vk = v0(t) + hv1(t) + h2v2(t) + h3v3(t) + h4v4(t) + h5v5(t) + O(h6)

µ = µ0 + hµ1 + h2µ2 + h3µ3 + h4µ4 + h5µ5 + O(h6)

ω = ω0 + hω1 + h2ω2 + h3ω3 + h4ω4 + h5ω5 + O(h6)

τ = τ0 + hτ1 + h2τ2 + h3τ3 + h4τ4 + h5τ5 + O(h6)

β = β0 + hβ1 + h2β2 + h3β3 + h4β4 + h5β5 + O(h6).

Relationships that give a nontrivial continuum limit (of order greater than 2) of the system
(A.1)–(A.2) are

u0(t) = v0(t) = v0 = constant µ0 = −2v0

β0 = ω0 = 2v3
0 β1 = ω1 β2 = ω2 β3 = ω3 β4 = ω4
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τ0 = −2v2
0 τ1 = 2µ1v0 τ2 = −µ2v0 − ω2

v0
+µ2

1

τ3 = −µ3v0 − ω3

v0
+

1

2
µ2µ1 +

µ3
1

2v0
− ω2µ1

2v2
0

and

u1 + v1 = −µ1

u2 + v2 = 1

2
v′1 +

1

2v0
v2

1 +
µ1

2v0
v1− µ2

4
+
ω2

4v2
0

− µ2
1

4v0

u3 + v3 = −1

4
(u′2 − v′2) +

1

4v0
(2v1 + 3µ1)v2 +

1

4v0
(−2v1 +µ1)u2

− µ1

4v0
v′1−

µ3

4
+
ω3

4v2
0

+
ω2µ1

8v3
0

− µ3
1

8v2
0

+
µ1µ2

8v0

u4 + v4 = 1

4
(v3− u3) + u3

(
µ1

4v0
− v1

2v0

)
+ v3

(
3µ1

4v0
+
v1

2v0

)
− 3

16
(u′′2 + v′′2) +

µ1

8v0
(u′2 − v′2)−

1

8v0
(u2

2 + v2
2)

+(u2 + v2)

(
3

8v0
v′1−

3

8v2
0

v2
1 −

3µ2

16v0
− ω2

16v3
0

− 3µ1

8v2
0

v1

)
− 3

4v0
u2v2 + v′1

(
µ2

8v0

)
+ v′′1

(
µ1

16v0
+
v1

8v0

)
+

1

12
v′′′1

+v4
1

(
1

4v3
0

)
+ v3

1

(
µ1

2v3
0

)
+ v2

1

(
3µ2

1

16v3
0

+
ω2

8v4
0

)
+ v1

(
− µ3

1

16v3
0

+
ω2µ1

8v4
0

)
+
a

8v2
0

t − 3µ4

8
+

3µ3µ1

16v0
+
ω4

8v2
0

− µ4
1

16v3
0

+
ω3µ1

16v3
0

+
ω2µ

2
1

16v4
0

− τ4

8v0

where′ denotesd
dt . Under these conditions the coefficients of O(1) to O(h4) vanish and we

are left with an equation at O(h5),

vtttt +C3vtt − 5C6(2vvtt + (vt )
2)− 10C1(v(vt )

2 + v2vtt ) + 6C2
1v

5

+C2v
4 +C4v

3 +C5v
2 +C8v +C7t (2C1v +C6) +C9 = 0

where

C1 := 1

v2
0

C2 := 15C1C6 C3 := − 1

v0

(
3µ2 +

µ2
1

v0
+
ω2

v2
0

)
C4 := 10C2

6 − 2C1C3 C5 := −3C3C6 C6 := µ1

v2
0

C7 := 4a

v0

C8 := 5ω2µ
2
1

v5
0

+
4ω3µ1

v4
0

+
3µ2

1µ2

v3
0

+
8µ4

v0
+

8ω4

v3
0

− 7µ4
1

2v4
0

+
µ2ω2

v4
0

− µ
2
2

2v2
0

+
8τ4

v2
0

− 4µ3µ1

v2
0

− ω2
2

2v6
0

C9 := 4µ4µ1

v0
+

2ω2µ
3
1

v5
0

− 7µ5
1

4v4
0

+
8ω5

v2
0

− 8β5

v2
0

− µ1µ
2
2

4v2
0

+
µ1µ2ω2

2v4
0

+
4ω4µ1

v3
0

− µ1ω
2
2

4v6
0

− 2µ3µ
2
1

v2
0

+
4µ1τ4

v2
0

+
2ω3µ

2
1

v4
0

+
4a

v2
0
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andv1(t) = v(t) for conciseness. We could choose special values for the constantsv0,µi , ωi ,
τi andβi (i = 0, 1, . . . ,5) but we wish to illustrate the strength of this approach where little
ingenuity is required.
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est uniformeActa Math.251–85
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