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Abstract. The discrete firstand second Pairdeguations (dRand dR ) are integrable difference
equations which have classical first, second or third Pagrgepations (R P or By ) as continuum

limits. dR and dR are believed to be integrable because they are discrete isomonodromy conditions
for associated (single-valued) linear problems. An infinite hierarchy of integrable difference
equations that share the same linear deformation problem,asadshown to exist by Cresswell

and Joshi. In this paper, we recall the results shown fpadB show how to deduce a hierarchy for

dR;. Each member of the respective hierarchies is shown to be generated by difference recursion
operators. Furthermore, we show that continuum limits of these difference hierarchies lead to the
P, Py and Ry hierarchies. Finally, we construct Miura transformations of thg dierarchy and

show that these lead to the hierarchy of the discrete thirty-fourth Paielguation.

1. Introduction

The first discrete Painlévequation (dP
C1+Con +

xﬂ
and the second discrete Pairéezquation (dp)
(C1+Con)x, +C3

1—x?
have been the subject of many investigations [1, 2] because of the remarkable properties they
share with their continuum limits. These are the well known integrable nonlinear classical
ordinary differential equations (ODESs) called the Paiéleguations. In this paper, we add
to their remarkable features by showing that each lies at the base of an infinite hierarchy of
nonlinear difference equations that are generated by a recursion operator.
The scaled continuum limit, = 1 +h2u(t), t = nh, with C; = —3 +r1h2, Co = rph®,

Cs = 3— B —r3h* where the; (i = 1, 2, 3) are constants, applied to,dfelds a scaled and
translated version of the classical P

Xpel T Xy T Xp1 = C3 (11)

Xpvl T Xp_1 = (12)

u’ = 6u’+t

ash — 0. The scaled continuum limit, = hu(t), t = nh, with C1 = 2 +r1h3, Co = rh5,
Cs = r3h®, wherethe; (i = 1, 2, 3) are constants, applied todfields a scaled and translated
version of the classical,P

W=l +tu+a
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ash — 0 (« is a constant). It is well known that gRilso has a continuum limit to the third
Painlewe equation [3] (R})

W2 _u_’+au2+,3
t t

)
+yu3+—
u

u”(t) —

wherew, 8, v, § are constants.

A characteristic feature of the classical Pai@eguations is that they possess the Pa@lev
property, i.e. all movable singularities of all solutions are poles. Pdrjidy Gambier [5] and
Fuchs [6] identified six second-order nonlinear ODEs (under some mild conditions) as the only
ones with the Painlé@sproperty whose general solutions are new transcendental functions. P
Py and R, were the first three of these six equations. See the list of 50 canonical classes
identified by the Painlév school in Ince [7]. Ry referred to below is the thirty-fourth
member of this list.

The Painleg equations and gRIR, play important roles in mathematics and physics. The
generic solutions of the Painleequations are higher transcendental functions that cannot be
expressed in terms of the classical special functions [7]. The Paielgwations are integrable
reductions of soliton equations [8,9]. Their discrete versions appear in important physical
applications such as two-dimensional quantum gravity [1, 10, 11].

The Painleg equations are considered integrable because they are isomonodromy
conditions for associated (single-valued) linear systems of differential equations [12, 13].
There is strong evidence that such integrability is related to the Paipl®perty [14—-16].

A discrete version of the Painle\property, called the singularity confinement property,
was proposed by Grammaticos, Ramanal [2, 17] who used it to derive discrete versions
of the Painlee equations. Although it is now known that this property alone is not sufficient
for integrability [18], the discrete Painlévequations found by Grammaticos, Ramanal
are known to be integrable in the sense that they are compatibility conditions that ensure
isomonodromy for associated linear problems [19, 20]. The confinement property is equivalent
to the well-posedness of the discrete equatiorxfereven through apparent singularities of
the equation, on the complex spherecefalues in both forward and backward evolutiomin
For example, in the case of gequation (1.2)), ifx,_1 = b, x, = %1 (a singularity of the
map), theny,+1 = 00, x,+2 = F1 andx,+3 is an analytic function ob, ensuring that the map
remains well-posed through a singularity [17].

There exist many other properties of the Paigleguations that are shared by their discrete
counterparts. Both can be rewritten in terms of so-catlddnctions that have no movable
singularities [21, 22], both possess so-called Miura aackBind transformations that map the
equation to another integrable equation (or to the same one with different parameters) [23—-26].
Py is well known to be related by a Miura transformation tekv [7]-

In this paper we describe further similarities between the continuous and discrete settings
by constructing integrable hierarchies of equations associated with the same linear problem.

Integrable hierarchies of partial differential equations (PDEs) and ODEs as well as the
links between them are well known. For example, the modified Korteweg—de Vries (mKdV)
hierarchy (using) = )

Wi, + 00+ 2W)L;[W, — W?] =0 i=123...
where

Livi, = (33 +4Ud +2U,)L; Li[U]:=U
may be obtained from the Korteweg—de Vries hierarchy [27]

Uiy + 0Lia[U] =0 i=1,23,...
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via the Miura transformatiot/ = W, — W2 [28]. In turn, the i} hierarchy
d
(E+ZV>L,~[V/—V2]—VX—01,-=O i=123,... (1.3)

may be found through a similarity reduction of the mKdV hierarchy [29]

X
X = —
[(20 + Dyrgiq] V@D

V= [(2i + 1)1pi41] Y/ @*D V(X)

Also, the Rxxy hierarchy

2 d 2 q
wiy) - [&mm)} + S LvD

+2L;[Y] — X]?Y —;(1— ;) =0

[2Li[Y] — X]

may be constructed from the PRierarchy through the Miura transformation [30]

d
V= | gelrh —a | feLa - x

Equation (1.3) expresses an infinite hierarchy of equations through the recursive action of one
operatorL;. Such an expression also allows us to deduce Miura @o#tlBnd transformations

for the whole hierarchy (as above) and corresponding special integrals for the whole hierarchy
[31]. (In the case of PDEs, it is well known that the existence of such operators is related
to Lie algebras underlying soliton equations [32—34].) Here we are interested in deriving a
corresponding expression for the discrete setting.

The paper is organized as follows. In section 2, we recall the isomonodromy problem
for dB and extend on the work presented in [35] by deriving the associated infinite hierarchy
of integrable equations in terms of difference operators. We provide explicit examples up to
sixth order and continuum limits of the second- and fourth-order equations. This is repeated
for dR,; in section 3. In section 4, we construct thexgdk\, hierarchy by applying Miura
transformations to equations in the,dRierarchy. We provide explicit examples up to fourth
order. In the following, all occurrences af, r; denote constants.

2. The dR hierarchy
In this section, we derive the gdRierarchy in operator form and give the first few members of

the hierarchy explicitly. We also show that their continuum limits are members of both the P
and Ry hierarchies found in [29, 35, 36].

2.1. The hierarchy

The linear problem associated with,d®9] is

xn¢n+l = )»(15;1 - ¢n—l (21)
¢,
ad; = a4y Pp+1 + by, (22)

where¢, x, a, b depend on a discrete variableo, a, b depend on the continuous variable
anda, b are rational im.
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The compatibility conditions of equations (2.1) and (2.2) are

bn+l - bn—l + )‘-<an+l - a_") =0 (23)
Xn+1 Xn
)"2 n n )‘ 1 n
_(a e - a_) + _(bn+1 - bn) - _(xna i —ap1t 1) =0. (24)
Xn \ Xn+1 Xn Xn Xn Xn+1
Define
Dn = n and qn = b, +b,_1.
Xn

Thenb can be eliminated from equation (2.4) by using (2.3). The result is

_)\2(p11+l - pn) t Xp+1Pn+2 T Xy Pusl — XnPn — Xn—1Pn-1t 2=0. (25)
We concentrate on results fgr,. Corresponding results fag, can be obtained from
equation (2.3).

Equation (2.5) suggests thaf is polynomial ini but gives no restriction on the degree
of the polynomial. (More generally it could be rational’in but for simplicity we restrict
our analysis to the polynomial case.) Below, we generate a sequence of solutiafs
equation (2.5) where the sequence is indexed by the degree.

First, to capture the entire sequence in closed form rewrite (2.5) as
—A2(A%py + Apy) + 3A (5 Apy) + A (X pa) — 2(A%,) - (Apy + pa)

+A2x,(Apy) + A% (6 ps) +2=0

whereAp, ‘= pp+1 — P, OF

[W2(A%+A) — T]p, =2 (2.6)
where

T = 3A0x,A) + 4A(x,) — 2(Ax,) - (A + 1) + Ax, (A) + A%(x,).

Notice that(A? + A)p, = pns2 — Pnsi.
Now takep, to be polynomial in

!
Pni= Y Peadk.
k=0

Substituting this expression into (2.6) and solving for the coeffici®ptswe obtain

P,=q P_1,=c-1
Pion=(A*+N)TTP, for 2<k<lI

where(A2 + A)~1F, := Y125 F, is the discrete analogue of the nonlocal operatdrF =

[ F dx. These lead to the compatibility conditions
jPLn =0 and jPo,n +2=0.

Note that the equation foP; , is homogeneous, whereas the equationHgy is not.
Clearly, P1,, = 0 is a possible solution. Also note that the equations defiing for
even and odd may be separated into otherwise identical equations. These lead to two
inconsistent compatibility conditions for, unless one of these two subsequence®,of
vanishes identically. In fact;,, = 0 for odd! is the only possibility due to the inhomogeneity
of the equation foP .
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We are therefore left with the even polynomial

m
Pn = Z P2k,n)"2k
k=0

where
P2m,n = Cm;+2
Py—2n = (A% + A) 1T Py, for 1<k<m
andJ Py, = —2.
Recursive substitution of the, ,, leads to the single compatibility condition
Rm(xn+2 - xn)cm+2 = _2 m e N (27)

whereR := J(AZ+ A)~ L
Below we explicitly list the solutions for differemt up tom = 3.

o m = 0 yields the trivial linear nonautonomous equatiogi,d
Xpc2 =c1+co(=1)" —n
with
Po,=c2#0.
e m = 1 yields the second-order equationPd
XpC3(Xp_1+ X + Xp+1) + Xpc2 =1+ co(=1)" —n (2.8)
with
Poy = ca +c3(xy +xp-1)
Py, =c3#0.

In this case, we have recovered the more general version ¢1dp
e m = 2 yields the fourth-order equatiory/}:

2 2 2
xnc4(xn+1xn+2 + Xn+1 + anxn+l +Xp—1Xp-2 F X, _1 + an-xn—l + X, + xn—lxn+1)

+x,c3(Xp—1 + X, + Xp21) X020 =1t co(—D" —n (2.9)

2 2
PO n=C2 %t CS(xn + xn—l) + C4(2ann_]_ + Xnp—1 + X1 X2t XpXpe1 t Xn)
Pay = c3+calxy +xy-1)
Pap=cq# 0.

e m = 3yields the sixth-order equatiorg:

X5 (Xna 1 X4 2Xn43 F 2 Xt X2 F X1 X1 X042 + Xopq F Xa1 X2, + 2042x2, 4
+3xn+1x3 + anx,fﬂ_ +Xy—1Xp—2Xp-3 + zxnxn—lxn—2 + Xy —2Xp—1Xp+1
+x,‘j‘71 + xffzxn,l + foflx,,,z + an,le + 3xfflx,, +4dx, _1X, X041
+x3 + xn71x3+1 + x,?flx;ﬁl) + xnc4(xn+lxn+2 + x3+1 + 2)Cn-xn+1

2 2
tx,_1Xp2t Xy_1 + 2xn-xnfl + X, + Xn71Xn+1)

+X,03(Xn—1 F Xy + Xp41) T Xpc2 =1+ co(=1D)" —n
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with

PO,n =c2t CS(xn + xn—l) + C4(2ann_]_ + x,f_l + Xp_1Xp—2 t XpXpe1 x,?)
+C5(Xn Xp+1Xp+2 T 2Xn—1XpXpe1 + 3x3x,,_1 + 3)C3_1)Cn + xf_zxn—l
+ 20,4107 X8 F XS4 F XX P g+ Xy 10 2% 3 F 26X 1%, 2
+2x5_1xn—2)

P2,n =c3t CA(X,, + xn—l) + CS(anxn—l + xf_j_ +Xp_1Xp—2 T XpXpe1 T xs)

Pap = ca+cs5(x, +x,-1)
PG,n =Cs 7é 0.

As equation (2.7) is solved for increasing the order of the compatibility condition
increases by 2 at each stage.

2.2. Continuum limits

Continuum limits of difference equations found in section 2.1 are calculated.

2.2.1. The case: = 1, d,P,. Consider equation (2.8). ty = 0, we recover the equation
often referred to as dPwith P, as one of its continuum limits. ty # 0 however, the presence
of the (—1)" suggests an odd—even dependence,inThis dependence must be taken into
account to obtain a meaningful continuum limit. This leads to the transformation

X2k—1 = U X2k = Ug.

(This is similar to the limit pointed out by Grammaticetal [3] for dP,; generalized with an
additional(—1)" term.)
In our search for a continuum limit, we use the substitutions

2
up = 1 +hy(kh) v = z(kh) t =kh c3=——h"3
ri
and for ease of notation rename
+ —cot1 2
ui= are pri= AT o= and 0i=——.
c3 c3 c3 c3
Then we find

2=30+v—1 — -+ Dyh+L(rar +vy? — Lvy, — 1y, )2
+%(%r1 +Vyy, — rity — vy3)h3 +O(h™.
Using the scalings

u:—%62+%v2+%v+o—%—r2h3
—341,2 2
o=35+zv +r3h
V= 1+%r4h
in the limit 2 — 0 we are left with
Vi — 29° + 2r4y% — 21ty + 23y + Zrirat + 11+ 27, = 0.

This is a scaled and translated version pf P
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2.2.2. The caser = 2, 4P,. We first examine the casg = 0 and illustrate the fact that
second-order continuum limits are possible even though difference equation (2.9) is fourth
order. Under the substitution

xn = 1 +h%u(nh) t =nh
and the scalings
3 3 1
10+ﬁ—ﬂ+2=r1h4 20+£+2=r2h2 —=r3h5
C4 Cq Cq Cq C4 Ca
equation (2.9) becomes
<10 +C—3)u” + <10— ﬂ)uz +rou+ri+rst =0
Cq C4

in the limit 7 — 0. This is a scaled and translated version offowever, this case restricts
the four degrees of freedom contained in the parameters of equation (2.9) to three.
Scalings that maintain the full four degrees of freedom, i.e.

36‘3 Cc1 C2

3
10+223 22 _ b 20+28 + & opt
Ca Cq Cq Cq Cy
1
10+ & = }"3]’12 — = r4h7
Ca Cq
lead, in the limith — 0, to the fourth-order equation
Useer + 5(ur)? + 10y, + rauy + 10u® + 3rau? + rou + rq + rat = 0. (2.10)

This is a scaled and translated version of the fourth-order member of tierBrchy [35, 36].
The case # 0 requires a new general approach to finding continuum limits in order to
obtain a nontrivial limit.
Again, the presence of the-1)" leads us to take

Xop—1 = Uy X = Vi

whereupon equation (2.9) becomes a systeii mnd V. Assumer = kh and expand each
variable and parameter in this system as general Taylor series expansions\ia obtain
restrictions on the coefficients in these expansions by equating coefficients of successive powers
of 4. In demanding a nontrivial continuum limit (of order greater than 2) relationships between
coefficients up to @:°) are necessary. The continuum limit we obtain is

Virre + C3vyy — 5Ce(200;, + (Ut)z) - 10C1(U(Uz)2 + Uzvtr) + 6C]2_U5 + CZU4 + C4U3
+Csv% + Cgv + C71(2C1v + Cg) + Cg = 0 (2.12)

where theC; (i = 1,...,9) are constants andis the Q) coefficient in the expansion of
V,. For details see the appendix. Equation (2.11) is a scaled and translated version of the
fourth-order member of theyFhierarchy 4Py) [29].

3. The dR, hierarchy

We follow the procedure outlined in the previous section to find the liBrarchy. We also
give continuum limits of the first few members of this hierarchy.
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3.1. The hierarchy

The linear problem associated with,dp] is

@1 = L, (L) D, (3.1)
3D,

= M,(.) d, 3.2
5 (%) 3.2)

where

A Xn An Bn
L:(xn 1/)\) M‘(cn —An>
andA, B, C are rational im..

The compatibility of equations (3.1) and (3.2) gives three equations definiBgandC.
They reduce to a single equationdrby using two of these equations to elimin@andC in
terms ofA [3],

)‘«Z-xn+lxn71(An - An+1) + )‘«xn+1xnfl + Xp+1Xn (An(l +x371) + Anfl(xffl - 1))

_-xnxnfl(An+l(1 +.X3+1) + All+2('x3+l - 1))

1
_Xxn (xn+l +xn—1) - pxn+lxn—l(An+l - An) + Fxrﬁlxn—l =0.

This equation may be rewritten in operator form (usixg, := A,+1 — A,)

A+i_xn+1<l +i)=[<kz+r12>(A2+A)+J]An (3.3)

A3 A\ X2 Xp

J = Xp+1 |:A(A +2) <<xn — i) A +2xn> _ EA] )
Xn Xn

Equation (3.3) suggests tha, is rational inA. In this case it turns out that only odd
degree terms i and /A are needed in the expansion4f. Without loss of generality we
consider

where

1 - 2k—1 1
A, = al,nx + Z A + A 2k+1 A2k+1,n-

k=1
Substituting this expansion in (3.3) and solving for the coefficiepts (i = 0, ..., m) we
obtain
A2m+ln = Cim+2 Aom—1n = —2Cm+2XpXpn—1 + Cput1
A2k—3p = —A2A+1n — (A2 + A)iljagk_lﬁn for k=3,....m
and
ar, =n—as, — (A*+A)"'Jaz,

with the compatibility condition

1 1
Xn+1 ( + _> = _Z(AZ + A)a&n - jal,n- (34)

Xn+2 Xn

Equation (3.4) may be rewritten after recursive substitution of:he as

1 1
Xn+1 ( + _> = Ly—2(cm+2) — Lin—1(C+1 — 242Xy Xpn—1) — T

Xn+2 Xn
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form > 0, where
Li=—Lio— Li_1(A>+A)1T for i=3,....m—-1
Loi=J  L1:=2(A%+A)—RJ  Lp:=-3T+RLT

and
R = J(A%?+A)7L

We list the first three equations in the hierarchy. (The fourth equatios ) is a sixth-order

equation which is too long to list here.)

e m = 0 yields the trivial linear nonautonomous equatiogRd
Xp(2c0+2n+ 1) = ¢q +co(—=1)"
with
ai, = cptn.
e m = 1 yields the second-order equationPg:
203 (X1 + Xp-1)(L = x2) + 2, (202 + 20 + 1) = e1 + co(—1)"
with
ain, = €3 — 2c3XpXpy—1 +t 1
az, =c3#0.
Equation (3.5) is the general form of @3] traditionally written as
(C1+ Can)x, + C3+ Cy(—1)"
1—x?

whereC; := —(2cp + 1)/(2C3), Cy = —1/03, C3 .= Cl/(ZCg) andCy = Co/(2C3).
e m = 2 yields the fourth-order equatiory/}; :

Xp+1 tXpo1 =

2c4(xns2(L = x700) + x5 2(L = x2 1)) (L = x7) — 2¢4%, (Xpe1 + X -1)*(1 — x7)
+203(xp41 + Xy 1) (L — x7) + X, (202 + 20 + 1) = c1 + co(—1)"
with
ayn = 2 — 203X, Xp—1 + 1 — 204(XpXp—2 + Xp41Xy—1)
+204Xp Xn—1(Xn—1Xn—2 + Xp41X, T Xp_1Xp)
asy, = €3 — 2CaXpXn—1
as, = ca # 0.
We write (3.7) as
Xnr2(L = x7q) + X021 — x7_1) = (6t + %,-1) (60 (61 + X5 -1) + Cs)
+(C1 + Con)x, + C3 + Cy(=1)"
1-—x?

WhereC1 = —(2c2 + 1)/(2(,‘4), Cy = —1/6‘4, C3z = C]_/(2C4), Cy = Co/(2C4), and

Cs .= —C3/C4.

3.2. Continuum limits

3.2.1. The caser = 1, &bP,. WhenC,4 = 0, equation (3.6) is dPwith P, as one of its

continuum limits. WherC, # 0, equation (3.6) has,Pas a continuum limit [3].
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3.2.2. The caser = 2, d4P;;. Firstly, for the cas&, = 0 we see that under the substitution
X, = hu(nh) t =nh
scalings that give Pas a second-order continuum limit may be found, but the scalings

Cl = —6—2h2r1—2h3r2 C2=h5r3 C3=h5}’4
Cs=14 +h2r1 + h3r2

lead, in the limit: — 0, to the fourth-order equation
Urre — 10u%uy — 10u(u,)? + 2usry + 6u® — urst — ruy — ra = 0. (3.9

Equation (3.9) is a scaled and translated versiafPpf[29].

For the cas€, # 0 we use a similar approach to that used to find the continuum limit of
d4P;, co # 0 (subsection 2.2.2).

The(—1)" termin equation (3.8) prompts ustotake 1 = Uy, xx = V;. Inthe resulting
system, we find that general expansions

t=kh
“7 ) +ua(t) + hus(t) + h2uq(t) + h3us(t) + O(h%)
ivl(t) 2 3 4
Vi = h + (1) + hvs(t) + h7va(t) + h¥vs(r) + O(h™)
2 27']_ ro il"g
Ci=—+— Co=— C3=—
1=317 8 2= =
irg 2 . n
= — C =—+—
4 h STy

with added relationships for thg (1), j = 2, 3,4, 5, in terms ofy;(¢), 1 < I < j, make order
h terms vanish until @) where in the limit: — 0 we have the fourth-order equation
4 4vjvy N 2w ()2 3(vy)? N 100]  9(wp*

v
" 2.1 1 2 /
vy +10viv] — = (4rat —ry) — 2rvq —
2 v1 2vf V1 v? 2v3

2 7\2 N2 8
_ 0(1;1) + (vy) (brot — rf) + 81)? — 2vf(4r2t — rlz) + Svf(rg —ry) — —
vl U1 Ul

2
+—(4ryt — rf) —8(r3try) =0.
U1

We propose that the above equation is, in fact, the fourth-order equation ip theeRarchy.

4. The dRxxv hierarchy

Recently Joshiet al [26] have proposed an algorithmic method for deriving Miura
transformations for discrete equations. It has been used to construct Miura transformations
for a number of examples and, in particular, that linking ath dPxxy -

In this section, we use the same method to find a Miura transformation associated with
d4P and hence find a fourth-order equation that we propose is the next equation inghg dP
hierarchy. A similar approach may be applied to higher-order equations in fhki€iarchy
thereby providing a method by which to construct the fulfigi, hierarchy.



The discrete P, P;; and Pyxx;v hierarchies 665

The starting point of this algorithm is the associatddnctions. For di (equation (1.2))
these are given by, andG, where the bilinearizing transformation

Fy11G Fu1Gy
v, =1 FraGna ) Fam1Gon
F,G, F,G,
may be found by considering the singularity structitd, oo, 1} [22].
Now rewrite these in terms of discrete logarithmic derivatives

PO R (4.1)
Up Un+1
whereu, = F,/F,+1 andv, = G,_1/G,. Elimination of one of the:, v by combining (4.1)
and (1.2), leads to a transformed equation, in this cagex@P
an - C — Zn 2wn+C —Zn
(wn+l + w, — Zn+1)(wn + Wy—-1 — Zn) = ( & )( 3 +1) (42)

Wh
wherez,, = C; + Con. Equation (4.2) is linked to dPby the Miura transformation
Wy, — wy—1 — C3
Xy = —.
Zn
We now consider a similar construction fogRj. First, we find that the singularity

structure for Py, is {1, oo, F1}. Thus we consider associatedunctions, bilinearizing
transformations and logarithmic derivative versions thereof to be the same as, for dén
by eliminating one of tha, v by combining (4.1) and (3.8), we find the transformed equation
WE(Ws2Wps1 + Wy—1Wy—2) (Wy — k) + W) — 2wy (i + 2)

— Wy (Zn Wps2Wp+1 + Zpr1 Wy —1W,—2)

AWy LWy Wy~ 1 (Whe2 + Wea1 + Wy + wy—2) Cw, — &)

+w,21(wn+2w5+1 + wyzl—lwn—Z)

FWp+1 Wy Wy—1 (W2 + Wya1) (Wy—1 + Wy _2)

W] (Wi + wh 1) B, — 2 — 4) — Wy (ZuWiyy + Zura W)

W1 Wy wn_l(/c2 — 4w,k — 8w, + 5w5) + w,%(wf,rl + ws’_l)

+w5(wn+1 + w,,_l)(/c2 + 8k + 3w5 — 4w,k — 8w,)

—w2((22y + Zus D) Wis1 + (22541 + Z0) Wy—1)

W, ((22p41 + 20 (kK + 2)Wper + (22 + 21 (K + 2))wy-1)

w3 (= (2n + 21) + (K + 8)) + Wi((2y + 2011) (k€ +2) — 4ic?)

W, (ZpZpr1 — 26(2p + Zp41) + (C3+2,)(C3 — 2,41) =0 (4.3)
wherex = Cs + 2. Equation (4.3) is linked to,#, by the Miura transformation

(wn - wnfl)(wn tw,-1— K) T wpriw, — Wy—_1Wy,—2 + CS

Xp = — .
(W + Wp—1) (W, + Wyt — k) + WprtWy, + Wy_1Wy—2 + 2,

We propose that equation (4.3) is the fourth-order equation in thgx@Phierarchy.

5. Discussion

In this paper we have presented the discretari® R hierarchies in operator form. We have
shown their connection with hierarchies of ODEs through continuum limit calculations. The
connection of the dP hierarchy with the dRxx hierarchy is also shown through Miura
transformations.
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These results reveal a rich underlying structure that is open to further investigation. For
example, in deriving discrete Painkehierarchies in operator form through transformations of
already existing operator generated discrete Panhéerarchies. An obvious starting point
would be with the dRxy hierarchy as a Miura transformation of theydierarchy. On a
larger scale, a study of the properties of the difference operators associated with each hierarchy
would provide insight into what governs the hierarchies and would enable access to important
information such as special solutions or special integrals.
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Appendix

Details of the continuum limit calculation of,B, cg % 0 (subsection 2.2.2) are presented.
Consider equation (2.9). Let

Xop—1 = Uy X = Vi
and rename
C3 Cc2
= — T .= —
Cq Ca
c1t+co c1—co+1l 2
B = wi=— and 0 i=——.
Cq C4 Cyq

Equation (2.9) now becomes the system

U1V + sz +2ViUp + U1 Vi + szfl +2U Vi1 + Ukz +Vi_1Vi

+ pk
U+ Vet Vi) +T = 2 =0 (A1)
k
Uis1Vier + U + 2ViUpir + Uy Vieg + UZ + 22U Vi + VE + UpUp
+ pk
(U * U + Vi) + 7 — P V,O =0. (A.2)
k

Assume the following general Taylor series expansions:
t =kh p = rih®+ O(h®)
Uy = uo(t) + hu(1) + h®ua(t) + hPus(t) + h*ua(t) + hous(t) + O(h%)
Vi = vo(t) + hva (1) + h®vp(t) + h3vs(t) + h*va(t) + hPvs(r) + O(h®)
= o+ hpg + 2z + h3us + h* s+ hous + O(h®)
w = wo + hwy + h?wy + hPws + hws + hPws + O(h®)
T =10+ hty + h?to + 313 + hty + h7s + O(K®)
B = Bo+hPr+h*Ba+h®Bs+h*Ba+ h°Bs + O(h®).
Relationships that give a nontrivial continuum limit (of order greater than 2) of the system
(A.1)—(A.2) are
ug(t) = vo(t) = vg = constant o = —2vg

3
Bo = wo = 2v; P1=w1 B2 =w> Bz = w3 Ba= w4
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w2
0= —2v5 Ty = 2U1v0 T2=—H2Uo—v—+ﬂi
0
3
w3 1 ny w21
T3 = — vg— — + = + — —
3 K3V ~ SHai 20 202
and
uptvi=—w
2
K1 H2 w2 M1
Up+vp = SV + —vit Lty — —+— — L
2 2 2 ! 21)0 ! 21)0 ! 4 4U(2) 41)0
+ 1(/ /)+1(2 +3)+1(2+)
u V3 = ——=(U» —V — &V () —(— 24V u
3T l3 4224v01M124v0 1t Ha)u2
M1, M3 w3 WUl Mf Mip2
Tt st T ot
4vg 4 4§ 8y 8Buj 8Buo
1 1 v1 3ur 1
ug+va=-(3—uz)+uz| — — — | +vg| — + —
4 4( 3 3) 3<4v0 2vg 3 dvg  2vg
~ 3 )+ - u) — B+ o)
16 81)0 81)0

3, 3 5, 3 w2 S
+ + Q. VY17 g 2%1— 1603 82
(2 +v2) <8vo Vi~ g2l 16vo  16v3  8v3 o

3 / n2 ” M1 V1 1 "
——usv2tv; | — | v —+t — |+ —v
4U0u2 2 ! (8110) ! <16U0 81)0 12 !

1 3 2 3
+vf <—3> + v} (“_13> +0? (_Ms + w_24) +u; (——Mls + wZT)
43 2vg 1603 8vf 1603 8uf
@ Bpa Bugm | os pi o, oaun  oopi T4
8v§ 8 16vg 8v§ 16v8 16vg 161)61 8vg
where’ denotes(%. Under these conditions the coefficients aflpto O(k*) vanish and we
are left with an equation at@°),
Vi + Cavy — 5Ce(2vv;, + (Ut)z) - lOCl(v(v,)z + Uzvtt) + GCfUS

+Cov* + C4v3 + C5v? + Cgv + C71(2C1v + Cg) + Cg = 0

+

where
1 1 2 o
C = — C, .= 15C,1C¢ Czi=—— (3;1,2 + ﬂ + —5)
v3 vo vo  v3
4a
Ca:=10C2—2C1C5  Cs5:=—3CsCs  Coi= % Cyi= 2
UO Vo
Swop?  Awzpr | 3uipe  8ua  8Bws  Tul | powr
Cg = 51+ — + 13 +—+—3——i+ Z
Vg Vg vy Vo Vg v, vy
M3 Bu Augm  wf
2v(2, US vg 2v8
oo Aana 2wp103 T3 Bws  8fs  papd | papows
9 Vo vg Mg V3 v3 43 2vg
2 2 2
+4w4,u1 _ Hw;  2pspg N 417y N 2037 N 4a

3 6 2 2 4 2
vy 4v, V5 V5 v Vg
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andv; () = v(¢) for conciseness. We could choose special values for the consgants w;,
r; andg; (i = 0,1,...,5) but we wish to illustrate the strength of this approach where little
ingenuity is required.
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